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Abstract
“Inverse problems” lives at the confluence of applied 
math, substantive fields in science and engineering, and 
statistics.  

To quantify uncertainty statistically, probability has to 
enter the problem from somewhere.  Where?  

Ideas from statistical decision theory provide a useful 
perspective.  Some statistical notions are closely related to 
deterministic ones.

Notions of optimality differ; measures of performance 
interesting.  Helps to look at methods from many angles.

Prior information crucial.  Prior probability distributions 
usually add more info than constraints—harder to justify.

Bayesian framework, while appealing and flexible, often 
leaves the realm of “Science.”  



  

Nature this week:

[an apparent surge in the impact flux of km-sized 
bodies] was triggered by the catastrophic 
disruption of the parent body of the asteroid 
Baptistina, which we infer was a ~170-km-
diameter body [] that broke up 160 Myr ago []. We 
find that this asteroid shower is the most likely 
source (>90 per cent probability) of the Chicxulub 
impactor that produced the Cretaceous/Tertiary 
(K/T) mass extinction event 65 Myr ago.

Bottke, W.F., D. Vokrouhlický & D. Nesvorný, 2007.  An 
asteroid breakup 160 Myr ago as the probable source of 
the K/T impactor, Nature, 449, 48‒53.



  

What (in heavens) does this mean? 

This is an inverse problem—what is the source of 
the K/T impactor?

Solution is stated as a probability.

How is “probability” to be interpreted?

What ties the number to the world we live in?

How is the number calculated?

Where does “randomness” enter the problem?

Several “theories of probability.”

All have the same axioms; interpretations differ.



  

Coin Tosses. What does P (heads) = 1/2 mean?

• Equally likely outcomes: Nature indifferent; 
principle of insufficient reason

• Frequency theory: long-term limiting relative 
frequency

• Subjective theory: strength of belief

• Probability models: property of math model; 
testable predictions

• Math coins  real coins.

• Weather predictions: look at sets of assignments. 
Scoring rules.



  

Littlewood, 1953
Mathematics (by which I shall mean pure 
mathematics) has no grip on the real world; if 
probability is to deal with the real world it must 
contain elements outside mathematics; the meaning 
of ‘probability’ must relate to the real world, and 
there must be one or more ‘primitive’ propositions 
about the real world, from which we can then 
proceed deductively (i.e. mathematically). We will 
suppose (as we may by lumping several primitive 
propositions together) that there is just one 
primitive proposition, the ‘probability axiom,’ and 
we will call it A for short. Although it has got to be 
true, A is by the nature of the case incapable of 
deductive proof, for the sufficient reason that it is 
about the real world . . . .

• believe that if (with the natural reservations) an 
act like throwing a die

• is repeated n times the proportion of 6’s will, with 
certainty , tend to

• a limit, p say, as n → ∞. (Attempts are made to 
sublimate the limit

• into some Pickwickian sense—‘limit’ in inverted 
commas. But either you

• mean the ordinary limit, or else you have the 
problem of explaining how

• ‘limit’ behaves, and you are no further. You do not 
make an illegitimate

•



  

Littlewood, contd.
There are 2 schools. One, which I will call 
mathematical, stays inside mathematics, with 
results that I shall consider later. We will begin with 
the other school, which I will call philosophical. This 
attacks directly the ‘real’ probability problem; what 
are the axiom A and the meaning of ‘probability’ to 
be, and how can we justify A? It will be instructive 
to consider the attempt called the ‘frequency 
theory’. It is natural to believe that if (with the 
natural reservations) an act like throwing a die is 
repeated n times the proportion of 6’s will, with 
certainty, tend to a limit, p say, as n → ∞. (Attempts 
are made to sublimate the limit into some 
Pickwickian sense—‘limit’ in inverted commas. 



  

Littlewood, contd.
But either you mean the ordinary limit, or else you 
have the problem of explaining how ‘limit’ behaves, 
and you are no further. You do not make an 
illegitimate conception legitimate by putting it into 
inverted commas.) If we take this proposition as ‘A’ 
we can at least settle off-hand the other problem, of 
the meaning of probability; we define its measure 
for the event in question to be the number p. But for 
the rest this A takes us nowhere. Suppose we throw 
1000 times and wish to know what to expect. Is 
1000 large enough for the convergence to have got 
under way, and how far? A does not say. We have, 
then, to add to it something about the rate of 
convergence. Now an A cannot assert a certainty 
about a particular number n of throws, such as



  

Littlewood, contd.
‘the proportion of 6’s will certainly be within p±ε 
for large enough n (the largeness depending on ε)’. 
It can only say ‘the proportion will lie between p±ε 
with at least such and such probability (depending 
on ε and n0 ) whenever n > n0 ’. The vicious circle is 
apparent. We have not merely failed to justify a 
workable A; we have failed even to state one which 
would work if its truth were granted. It is generally 
agreed that the frequency theory won’t work. But 
whatever the theory it is clear that the vicious circle 
is very deep-seated: certainty being impossible, 
whatever A is made to state can be stated only in 
terms of ‘probability’.



  

Bottke et al., 2007 claim

P(Chicxulub impactor was from Baptistina breakup) ³ 0.9

• What does that mean?

– None of the standard theories helps.

• Where does the number come from?

– It comes from a complex model.

– Many assumptions and data processing steps.



  

Some of the steps
• Start with catalog of estimated orbital parameters

• Apply a hierarchical clustering algorithm to the catalog, using 
several ad hoc tuning parameters and an ad hoc choice of a 
metric.  After some fiddling and judgment calls, classify each 
asteroid as belonging to BAF or not.

• Use Sloan Digital Sky Survey color data to refine the 
classification; ad hoc choice of a threshold velocity. Lingering 
questions about left censoring, etc.

• Estimate age of BAF using parametric model for how the center of 
an asteroid family gets depleted as the family evolves; perform 
repeated Monte Carlo using Gaussian distributions for the 
components of the parent body's velocity, with same SD in all 
directions.  Part of the relationship between SD and diameter 
calibrated to data from a 5.8Myr asteroid family.  Magnitude 
converted to size using rule of thumb assuming constant 
geometric albedo.  Choose orientation of spin axes s.t. 
cos ɛ~U[-1,1] (error in ms.); rotational velocity truncated 
Gaussian.



  

More steps
• Track fragments, use simple model for thermal effects on the orbit 

and assumed constant values for thermal conductivity, specific heat 
capacity and density. 

• Evolve obliquity and rotation rate using simple DEQ model for 
YORP effect—with a fudge factor.

• Model how collisions affect spin vector of asteroids: some collisions 
give a new random spin.

• Fit free parameters within a priori intervals; reject initial conditions 
if “best fit” is poor.  Result: 
age T = 160MYr (+30/-20)
scalar velocity V0 = 40±10 m/s

• Start with a compilation of estimates of magnitudes of objects 
classified as BAF.  Adjust magnitudes to undo bias from an 
assumption the surveys used to calculate magnitude. Take 
magnitudes for objects with larger than threshold orbital semimajor 
axis; assume these are a mirror image, so double the counts to get a 
magnitude distribution for BAF.



  

and more...
• Make a parametric bootstrap of magnitude values with Gaussian 

errors.  Truncate the data at magnitude 15.3.  Fit power-law model 
to 10,000 pseudo datasets.  Extrapolate the model to magnitude 
19.1, corresponding to 1km diameter objects.  Take mean and SD:
(1.36 ±0.3) x 105. Get size frequency distribution this way.

• Estimate loss of objects from BAF by tracking test members using 
numerical dynamical model for 70 5-km asteroids, assumed density, 
thermal inertia and spin velocity, uniform spin orientation.  
Simulation includes Venus—Neptune.  As orbits evolve, some 
approach J7:2/M5:9 resonance; there, some get into planet-crossing 
orbits, hit the Sun, or leave the solar system.  Repeat for 750 10-km 
test asteroids; find fraction that are trapped long enough to reach 
Mars-crossing orbit.

• Estimate rate of planetary impacts (using different dynamical 
approximations) from 9024 test bodies in the J7:2/M5:9 resonance.

• Estimate the initial size frequency distribution of the BAF using 
smooth particle hydrodynamic models of collisions with assumed 
diameters, compositions, velocities, and collision angles.



  

not done yet...
• Use estimated initial distribution and a depletion rule to estimate 

the number of objects of each size in the BAF as a function of time 
since the collision that formed the family.

• Use the Monte Carlo simulations with test objects to invent a 
probability distribution for BAF asteroids of a given size to reach 
the J7:2/M5:9 resonance at time t.

• Use the Monte Carlo simulations with test objects to invent a 
probability distribution for objects in the resonance to hit Earth at 
time t after reaching the resonance.

• Finding: 40% chance of no impact from a K/T-size object. 60% 
chance of one or more impacts in the  160 My since the inferred 
origin of the BAF.

60%?  I thought they said >90%?
(and what about 160My vs. 65My?)

There's still more: Bayes calculation depending on 
background rates... NEO and comet impact rates...



  

So, where does the randomness come from?

Ultimately, it comes from the Gaussian, uniform, 
and truncated Gaussian distributions used in the 
Monte Carlo simulations, plus independence 
assumptions, etc.

Does not include observational errors, catalog 
issues, or similar (as far as I can tell).

Even if you buy all the approximations to the 
dynamics, uncertainties in the catalogs, etc., the 
stochastics seem tenuous.



  

Where does probability come from in IP?

• The state of Nature can be thought of as random 
(subjective [Bayesian] approach)

According to I.J. Good (1965),

"...the essential defining property of a Bayesian is that 
he regards it as meaningful to talk about the 
probability P(H|E) of a hypothesis H, given evidence 
E."

• Observational errors can be modeled as random 
(both frequentists and Bayesians)

• The physical process can be modeled as random 
(Big-Bang cosmology, earthquakes, ...)  Models 
need to be calibrated and tested.



  

Technical Stuff—Outline

• Inverse Problems as Statistics

– Ingredients; Models

– Forward and Inverse Problems—applied perspective

– Statistical point of view

– Some connections

• Linear inverse problems

• Qualitative uncertainty: Identifiability and uniqueness

– Sketch of identifiablity

– Example: interpolation with systematic error & 
noise



  

Technical outline, contd.

• Quantitative uncertainty: Decision Theory

– Comparing decision rules: Loss and Risk

– Strategies. Bayes/Minimax duality

– Example: Shrinkage estimators and MSE Risk

– Illustration: Estimating a bounded normal mean



  

Inverse Problems as Statistics

• Measurable space X of possible data X.

• Set Θ of descriptions of the world—models. 
Typically Θ has special structure.

• Family P = {Pθ : θ ∈ Θ} of probability distributions 
on X indexed by models θ. 

• Forward operator θ → Pθ maps model θ into a 
probability measure on X . 

X –valued data X are a sample from Pθ.

Pθ is all: randomness in the “truth,” measurement 
error, systematic error, censoring, etc.



  

Inverse Problems

Observe data X drawn from Pθ for some 
unknown θ∈Θ. (Assume Θ contains at least 
two points; otherwise, data superfluous.)

Use X and the knowledge that θ∈Θ to learn 
about θ; for example, to estimate a parameter 
g(θ) (the value g(θ) at θ of a G-valued function 
g defined on Θ).



  

Forward Problems in Science & Engineering

Often thought of as a composition of steps:

– transform idealized model θ into perfect, 
noise-free, infinite-dimensional data 
(“approximate physics”)

– keep a finite number of the perfect data, 
because can only measure, record, and 
compute with finite lists

– possibly corrupt the list with measurement 
error.

Equivalent to single-step procedure that includes 
censoring and corruption.



  

Inverse Problems in Science & Engineering

Inverse problems often “solved” using 
applied math methods for Ill-posed problems 
(e.g., Tichonov regularization, analytic 
integral or differential inversions)

Those methods are designed to answer 
different questions; can behave poorly with 
data (e.g., bad bias & variance)

Inference ≠ construction:  Statistical 
viewpoint may be better for real data with 
random errors.



  

Elements of the Statistical View

Distinguish between characteristics of the 
problem and characteristics of the methods.

Identifiability is a fundamental qualitative 
property of a parameter:

g is identifiable if for all η, ζ ∈ Θ,

{g(η) ≠ g(ζ)} ⇒ {Pη ≠ Pζ}.

In most inverse problems, g(θ) = θ isn't 
identifiable, nor are most linear functionals of 
θ.



  

Deterministic/Statistical Connections

Identifiability—distinct parameter values yield 
distinct probability distributions for the 
observables— is similar to uniqueness—forward 
operator maps at most one model into the observed 
data.

Consistency—parameter can be estimated with 
arbitrary accuracy as the number of data grows— 
is related to stability of a recovery algorithm—
small changes in the data produce small changes in 
the recovered model.

∃ quantitative connections too. 



  

Linear Forward Problems
A forward problem is linear if

• Θ is a subset of a separable Banach space T

• X = ℜn,  X = (Xj)j=1
n

• For some fixed sequence (κj)j=1
n of elements 

of T* (the normed dual of T), 

Xj = <κj, θ> + εj,  θ ∊ Θ, 

where ε = (εj)j=1
n is a vector of stochastic 

errors whose distribution does not depend on 
θ.



  

Linear Forward Problems, contd.

Linear functionals {κj} are the “representers”

Distribution Pθ is the probability distribution of X. 

Typically, dim(Θ) = ∞; at least, n < dim(Θ), so 
estimating θ is an underdetermined problem.

Define

K : T  → ℜn

 θ ↦ (<κj, θ>)j=1
n .

Abbreviate forward problem by X = Kθ + ε, θ ∈ Θ.



  

Linear Inverse Problems

Use X = Kθ + ε, and the constraint θ ∈ Θ to 
estimate or draw inferences about g(θ).

Pθ, the probability distribution of X, depends 
on θ only through Kθ, so if there are two 
points

 θ1, θ2 ∈ Θ such that Kθ1 = Kθ2 but 

g(θ1)≠g(θ2), 

then g(θ) is not identifiable.



  

Example: Interpolation w/ systematic error & noise 

 Observe Xj = f(tj) + ρj + εj,    j = 1, 2, …, n.

• f ∊ C,  a set of smooth of functions on [0, 1]

• tj ∊ [0, 1]

• |ρj|≤ 1, j=1, 2, … , n

• εj iid N(0, 1)

Θ = C x [-1, 1]n, X = ℜn, and θ = (f, ρ1, …, ρn).  

Then Pθ has density 

(2π)-n/2 exp{-∑j=1
n (xj – f(tj)-ρj)2}.



  

ℜ

X = RnΘ

Sketch: Identifiability

θ

Kθ
X = Kθ+ε

Kζ

ζ

g(θ)

η

Pθ
Pζ = Pη

g(η)g(ζ)

{Pζ = Pη} ⇏ {g(η) = g(ζ)}, so g not identifiable

{Pζ = Pη} ⇏ {η = ζ}, so θ not identifiable

g cannot be estimated with bounded bias



  

Loss and Risk

• 2-player game: Nature v. Statistician. 

• Nature picks θ from Θ. 
θ is secret, but statistician knows Θ.

• Statistician picks δ from a set D of rules. 
δ is secret.

• Generate data X from Pθ, apply δ.  

• Statistician pays loss L(θ, δ(X)). L should be 
dictated by scientific context, but…

• Risk is expected loss: r(θ, δ) = EθL(θ, δ(X))

• Good rule δ has small risk, but what does small 
mean?



  

Strategies
Rare that one δ has smallest risk ∀θ∈Θ. 

•  δ is admissible if no estimator does at least as well 
for every θ, and better for some θ. 

• Minimax decision minimizes 

rΘ(δ) ≡ supθ∈Θr(θ, δ) over δ∈D (Nature picks θ cleverly)

• Minimax risk is  rΘ
* ≡ infδ ∊ D rΘ(δ)

• Bayes risk of δ for prior probability distribution  is

rπ(δ) ≡ ∫Θr(θ,δ)π(dθ) (Nature picks θ at random from )

• Bayes decision minimizes  rπ(δ) over δ∈D

• Bayes risk is  rπ
* ≡ infδ ∊ D rπ(δ).



  

Minimax often Bayes for least favorable prior

If minimax risk ≫ Bayes risk, prior π (not data and 
constraints) controls the apparent uncertainty of 
the Bayes estimate.

Generally for convex Θ, D, concave-convexlike r, 



  

Example: Bounded Normal Mean

Observe X ∼ N (θ, 1).  Know a priori θ ∊ [-τ, τ].

Want to estimate g(θ) ≡ θ.

Squared-error loss:

L(θ, δ) = (θ - δ)2

r(θ, δ) = Eθ L(θ, δ(X)) = Eθ (θ - δ(X))2

rΘ(δ) = supθ ∊ Θ r(θ, δ) = supθ ∊ Θ Eθ (θ - δ(X))2

rΘ
∗ = infδ ∊ D supθ ∊ Θ Eθ (θ - δ(X))2



  

Risk of X for bounded normal mean
Naive (& maximum likelihood) estimator is

δ(X) ≡ X. 

EX = θ, ∴ X unbiased for θ,  ∴ θ unbiasedly estimable.

r(θ, X) = Eθ (θ – X)2 = Var(X) = 1.

Consider uniform prior to capture constraint θ ∊ [-τ, τ]: 

θ∼π = U[-τ, τ] = uniform distribution on [-τ, τ].

rπ(X) = ∫-ττ r(θ, X) π(dθ) = ∫-ττ (2τ)-1 dθ = 1.

Frequentist risk of X equals Bayes risk of X for uniform 
prior π (but X is not the Bayes estimator).



  

Truncation is better (but not best)
Easy to find an estimator better than X from both 
frequentist and Bayes perspectives.

Truncation estimate δT

δT is biased, but has smaller MSE than X, ∀θ ∊ Θ.



  

Minimax MSE Estimate of BNM
Truncation estimate better than X, but 
neither minimax nor Bayes.

Clear that r* ≤ min(1, τ2) since MSE(X) = 1, 
and rΘ(0) = τ2.

Minimax MSE estimator is a nonlinear 
shrinkage estimator.

Minimax MSE risk for affine estimators is 
τ2/(1+τ2).

Minimax MSE for nonlinear estimators no 
less than 4/5*(minimax affine risk)



  

Bayes estimator is also nonlinear 
shrinkage

6 4 2 0 2 4 6
6

4

2

0

2

4

6

Bayes estimator δπ
*, τ=3

X

δπ
*δT

For τ = 3, Bayes risk rπ
* ≈ 0.7 (by simulation) .

Minimax risk rΘ
* = 0.75.



  

Bayes & Minimax Risks

Difference between  knowing θ ∊ [-τ, τ] and θ ∼ U[-τ, τ].
(3rd column is a lower bound, 4/5*(minimax affine risk)

τ rπ*
(simulation)

rΘ*
(lower bound)

0.5 0.08 0.16
1 0.25 0.40
2 0.55 0.64
3 0.70 0.72
4 0.77 0.75
5 0.82 0.77
>>1 →1 →1



  

Bayes & Minimax Risks

Difference between  knowing θ ∊ [-τ, τ] and θ ∼ U[-τ, τ].
(last column is a lower bound, 4/5*[minimax affine risk])



  

Summary
• To quantify uncertainty statistically/probabilistically, the 

randomness has to come from somewhere. Where? 
State of nature (Bayesian)? 
Noise (Bayesian and frequentist)? 

• Statistical viewpoint is useful abstraction.  
Physics in mapping θ ↦ Pθ

Prior information in constraint θ∈Θ. 

• There is more information in the assertion θ ∼ π, with π 
supported on Θ, than there is in the constraint θ ∊ Θ.

• Separating “model” θ from parameters g(θ) of interest is 
useful. Many interesting questions can be answered 
without estimating the entire model.

• Thinking about measures of performance is illuminating.
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